Spam Filter
“Super Spamitron 2k10”
Software Design Document

Version 2.0 – Elaboration Milestone
3 | Page

Revision History

	Date
	Version
	Description
	Author

	November 24, 2010
	1.0
	Initial Requirements Model
Preliminary Analysis & Design Model
* INCEPTION MILESTONE *
	Danilson, Michael
Devlin, Josh
Dimmick, Matthew
Ho, Suzanna
Kovene, Danny
Oothoudt, Ashley
Shiranian, Ani
Zivanovic, Aleksandar

	December 8, 2010
	2.0
	Complete Requirements Model
Initial Analysis & Design Model
Preliminary Implementation Model
* ELABORATION MILESTONE *
	Danilson, Michael
Devlin, Josh
Dimmick, Matthew
Ho, Suzanna
Kovene, Danny
Oothoudt, Ashley
Shiranian, Ani
Zivanovic, Aleksandar

Table of Contents
1.0	Introduction	4
1.1	Purpose	4
1.2	Scope	4
1.3	Glossary (Definitions, Acronyms, and Abbreviations)	4
1.4	List of Business Processes	5
1.5	References	5
1.6	Overview	5
2.0	Overall Description	6
2.1	Use-Case Diagram	6
2.1.1	Actors	6
2.1.2	Use-Cases	7
2.1.3	Use-Case Risk List	7
2.2	Use-Case Specifications	7
2.2.1	Categorize	7
2.2.2	Train	9
2.2.3	Format	10
2.2.4	Dequeue	11
2.2.5	Enqueue	11
3.0	Specific Requirements	12
3.1	Functionality	12
3.1.1	Training	12
3.1.2	Filtering Queue	12
3.1.3	Categorize	12
3.2	Usability	13
3.3	Reliability	13
3.4	Performance	13
3.5	Supportability	13
3.6	Design Constraints	13
3.7	Online User Documentation & Help System Requirements	13
3.8	Purchased Components	13
3.9	System Interfaces	13
3.9.1	Hardware Interfaces	13
3.9.2	Software Interfaces	13
3.9.3	Communications Interfaces	13
3.10	Licensing Requirements	13
3.11	Legal, Copyright & Other Notices	14
3.12	Applicable Standards	14
4.0	Product Acceptance Criteria	14
4.1	Specific Functionality Required in Version 1.0	14
5.0	Architectural Diagram	15
6.0	Architecture Development	15
6.1	Classes/Objects	15
6.2	Class Risk List	15
6.3	Event Flow/Class Modeling	16
6.4	Dynamic Modeling of Classes	19
6.4.1	Categorize	19
6.4.2	Train	20
7.0	System Class Diagram	23
8.0	Process View	23

Requirements Modeling
1.0 [bookmark: _Toc276470398][bookmark: _Toc276470425][bookmark: _Toc279501216]Introduction
1.1 [bookmark: _Toc276470399][bookmark: _Toc276470426][bookmark: _Toc279501217]Purpose
[bookmark: _Toc276470400][bookmark: _Toc276470427]The purpose of this document is to collect, analyze, and define high-level needs and features of the “Super Spamitron 2k10” spam filter software; henceforth known as SS2k10. It focuses on the capabilities needed by the stakeholders, and the target users, and why these needs exist. The details of how the SS2k10 software fulfills these needs are provided in the use-case and supplementary specifications.
1.2 [bookmark: _Toc279501218]Scope
[bookmark: _Toc276470401][bookmark: _Toc276470428]The SS2k10 software described in this document comprises the total scope of the project. The SS2k10 is designed to integrate with the client’s existing email system, so the integration and the operations with that system will be described in a separate document.
1.3 [bookmark: _Toc279501219]Glossary (Definitions, Acronyms, and Abbreviations)
Bayesian Spam Filtering:	A statistical technique of email filtering that is considered the most advanced form of email filtering. It utilizes mathematical probabilities to identify spam. Initial training is done by manually marking emails as spam or non-spam, which represents the ground truth.
Categorization database: 	Database consisting of filter words and associated probabilities that has been trained and is useable for categorization.
Categorize: 	Marking an email as either spam or non-spam.
Email:	Electronic mail.
Filter:	A device to remove unwanted elements from the whole.
Ground Truth: 	Facts that are verified in the field or by hand.
InQueue: 	A set of emails waiting to be categorized.
Marked email: 	An email that has been labeled spam or non-spam.
Non-spam: 	Safe email.
OutQueue: 	A set of emails that have been categorized.
Parsing: 	Scanning the file and separating the individual symbols and words contained in the email.
Server-marked email: 	An email that has been labeled spam or non-spam by the server.
Spam: 	Unwanted emails usually sent in bulk to a recipient’s email address.
Spam Probability
Threshold:	The minimum probability required to declare an email as spam. This is defaulted to 50%.
SS2k10: 	The “Super Spamitron 2k10” Spam Filter Product.
Stemming: 	The process for reducing inflected (or sometimes derived) words to their stem, base or root form.
Training database: 	Database consisting of filter words and associated probabilities used during training and is not currently useable for categorization.
1.4 [bookmark: _Toc279501220]List of Business Processes
None.
1.5 [bookmark: _Toc279501221]References
None.
1.6 [bookmark: _Toc279501222]Overview
The remainder of the document will be a description of the SS2k10 spam filtering system. It will contain information about the system’s features, constraints, quality ranges, precedence and priority, product requirements and documentation requirement.
2.0 [bookmark: _Toc279501223]Overall Description
2.1 [bookmark: _Toc279501224]Use-Case Diagram
[image:]
Figure 1 – SS2k10 Use-Case Diagram
2.1.1 [bookmark: _Toc279501225]Actors
Database: 	A database for storing the queue of emails, the categorization database, and training database.
Server:	An email server that the SS2k10 is installed on.
2.1.2 [bookmark: _Toc279501226]Use-Cases
Categorize: 	This use-case describes the process of determining the probability that a given email is spam.
Dequeue: 	This use-case describes the process of the server requesting the categorization of an email.
Enqueue: 	This use-case describes the process of the server adding an email to the queue to be categorized.
Format: 	This use-case describes the process of parsing and stemming an email into a format usable by the SS2k10.
Train: 	This use-case describes the process of clearing the database and filling it with an initial set of words and probabilities, or adding additional words and probabilities to the existing database.
2.1.3 [bookmark: _Toc279501227]Use-Case Risk List
High:		Categorize, Train
Medium:	Format
Low:		Dequeue, Enqueue
2.2 [bookmark: _Toc279501228]Use-Case Specifications
2.2.1 [bookmark: _Toc279501229]Categorize
· Brief Description
This use-case describes the process of determining the probability that a given email is spam. It implements the complex Bayesian Algorithm.
· Actors
Database, Server
· Dependencies
Dequeue, Enqueue, Train
· Basic Flow of Events: Successful Categorization
1. The use-case begins when called from the “Enqueue” use-case.
2. The filter verifies that the OutQueue is not full.
3. The filter retrieves the first email from the InQueue.
4. The filter sends the email to the “Format” use-case.
5. The filter receives the formatted email.
6. The filter runs the Bayesian Algorithm on the formatted email using the Categorization database.
7. The filter marks the email as spam or non-spam based on the result of the algorithm.
8. The filter stores the marked email in the OutQueue.
9. The filter repeats the process from step 2 until the InQueue is empty.
10. The use-case ends.
· Alternative Flow of Events: OutQueue is Full
1. The use-case begins when called from the “Enqueue”
use-case.
2. The filter encounters a full OutQueue.
3. The filter repeatedly checks the OutQueue until space
is available.
This alternative flow continues at step three of the basic flow.
[image:]
Figure 2 - Categorize Activity Diagram
2.2.2 [bookmark: _Toc279501230]
Train
· Brief Description
This use-case describes the process of clearing the database and filling it with an initial set of words and probabilities. It implements the complex Bayesian Algorithm.
· Actors
Database, Server
· Dependencies
None.
· Basic Flow of Events: Successful Training
1. The use-case begins when the server requests training.
2. The server sends a collection of server-marked emails to the filter.
3. The filter clears the training database of its preexisting values.
4. The filter sends each email to the “Format” use-case.
5. The filter receives the formatted emails.
6. The filter runs the Bayesian Algorithm on the formatted emails.
7. The filter updates the training database.
8. The filter swaps the references for the categorization and training databases.
9. The use-case ends.
· Alternative Flow of Events: Successful Re-Training
1. The use-case begins when the server requests re-training.
2. The server sends a collection of server-marked emails to the filter.
3. The filter copies the categorization database to training database.
4. The filter sends each email to the “Format” use-case.
5. The filter receives the formatted emails.
6. The filter runs the Bayesian Algorithm on the formatted emails and the values currently in the training database.
7. The filter updates the training database.
8. The filter swaps the references for the categorization and training databases.
9. The use-case ends.

[image:]

Figure 3 - Train Activity Diagram
2.2.3 [bookmark: _Toc279501231]Format
· Brief Description
This use-case describes the process of parsing and stemming an email into a format usable by the SSk210.
· Actors
None.
· Dependencies
Categorize, Train
· Basic Flow of Events: Successful Format
1. The use-case begins when called from the “Categorize” or “Train” use-cases.
2. The filter runs a parsing algorithm on the given email.
3. The filter runs a stemming algorithm on the parsed email.
4. The filter returns the formatted email
5. The use-case ends.
2.2.4 [bookmark: _Toc279501232]Dequeue
· Brief Description
This use-case describes the process of the server requesting the categorization of an email.
· Actors
Database, Server
· Dependencies
Categorize
· Basic Flow of Events: Successful Dequeue
1. The use-case begins when the server requests a marked email.
2. The filter verifies that the OutQueue is not empty.
3. The filter returns the next email in the OutQueue.
4. The use-case ends.
· Alternative Flow of Events: OutQueue is empty
1. The use-case begins when the server requests a marked email.
2. The filter encounters an empty OutQueue.
3. The filter repeatedly checks the OutQueue until it is not empty.
This alternative flow continues at step three of the basic flow.
2.2.5 [bookmark: _Toc279501233]Enqueue
· Brief Description
This use-case describes the process of the server adding an email to the queue to be categorized.
· Actors
Database, Server
· Dependencies
Categorize
· Basic Flow of Events: First Email in InQueue
1. The use-case begins when the server submits an email to be categorized.
2. The filter verifies that the InQueue is not full.
3. The filter adds the email in the InQueue.
4. The filter verifies that the email is the first in the InQueue.
5. The filter begins categorization through the “Categorize” use-case.
6. The use-case ends.
· Alternative Flow of Events 1: Not First Email in InQueue
1. The use-case begins when the server submits an email to be categorized.
2. The filter verifies that the InQueue is not full.
3. The filter adds the email in the InQueue.
4. The filter verifies that the email is not the first in the InQueue.
5. The use-case ends.
· Alternative Flow of Events 2: InQueue is full
1. The use-case begins when the server submits an email to be categorized.
2. The filter encounters a full InQueue.
3. The filter returns an error message informing the server that the InQueue is full.
4. The use-case ends.

3.0 [bookmark: _Toc279501234]Specific Requirements
3.1 [bookmark: _Toc279501235]Functionality
3.1.1 [bookmark: _Toc275771793][bookmark: _Toc279501236]Training
As required by the Bayesian Algorithm, the system must go through a training phase, where it parses known spam and known non-spam emails to produce a ground truth. Afterwards, it can proceed with the filtering process.
3.1.2 [bookmark: _Toc275771794][bookmark: _Toc279501237]Filtering Queue
The email server can add any emails that require spam identification to the filtering queue. If the email is the first item in the queue, it will alert the SS2k10 to begin categorizing the emails. If the email queue is empty the SS2k10 will enter a waiting state until either the queue is non-empty or training is called.
3.1.3 [bookmark: _Toc275771795][bookmark: _Toc279501238]Categorize
The system will categorize an email as either spam or non-spam by applying the Bayesian Algorithm. After categorization, the system will return the email to the server with its status and repeat the process for any remaining emails in the filtering queue. Categorize defines an e-mail to be spam if the probability of being spam is 50% or higher. The SS2k10 allows the customer to change the value that defines the spam probability threshold.
3.2 [bookmark: _Toc279501239]Usability
The user will be able to perform other email related tasks while the filter is running.
The server administrator will have the ability to initiate training/re-training.
3.3 [bookmark: _Toc279501240]Reliability
The reliability of the SS2k10 is dependent on the reliability of the email server and its database.
3.4 [bookmark: _Toc279501241]Performance
Depending on the specifications applied to the spam filter, the system will have anywhere from 85% to 95% accuracy.
3.5 [bookmark: _Toc279501242]Supportability
The SS2k10 will work on common operating systems, such as Windows, Mac OS, and Linux and with common email servers.
3.6 [bookmark: _Toc279501243]Design Constraints
The SS2k10 must not delay the user from receiving any emails. The SS2k10 must conform to the Bayesian Algorithm.
3.7 [bookmark: _Toc279501244]Online User Documentation & Help System Requirements
Documentation for the SS2k10 will be provided in the form of an online help manual for installation and troubleshooting. The system support manual will describe the steps necessary for server administrators to install and maintain the system.
3.8 [bookmark: _Toc279501245]Purchased Components
The SS2k10 will use the existing customer’s email server and database server.
3.9 [bookmark: _Toc279501246]System Interfaces
3.9.1 [bookmark: _Toc279501247]Hardware Interfaces
None.
3.9.2 [bookmark: _Toc279501248]Software Interfaces
The SS2k10 will interface with the customer’s email and database.
3.9.3 [bookmark: _Toc279501249]Communications Interfaces
None.
3.10 [bookmark: _Toc279501250]Licensing Requirements
None.
3.11 [bookmark: _Toc279501251]Legal, Copyright & Other Notices
None.
3.12 [bookmark: _Toc279501252]Applicable Standards
The Bayesian Algorithm consists of first parsing and stemming the email into a useable format. In the training process, the algorithm assigns probabilities to each word in the database based on its number of appearances in spam and non-spam emails. In categorization, it uses a sum of these existing probabilities to determine how likely an email is to be spam based on the words found in it.
4.0 [bookmark: _Toc279501253]Product Acceptance Criteria
4.1 [bookmark: _Toc279501254]Specific Functionality Required in Version 1.0
· Customer verifies that the SS2k10 is fully compatible with their specific email system.
· Customer verifies that the SS2k10 is accurate on a minimum of 85% of categorized emails.

[bookmark: _Toc278992143]Analysis & Design Modeling
5.0 [bookmark: _Toc279501255]Architectural Diagram
[image:]
Figure 4 – Class Architecture Diagram
6.0 [bookmark: _Toc279501256]Architecture Development
6.1 [bookmark: _Toc279501257]Classes/Objects
Categorize: 	This class runs the Bayesian algorithm on an individual email to determine if it is spam.
EmailObj:	This object contains the email and its categorization.
Format: 	This class defines the process of parsing and stemming an email into a format usable by the SSk210.
MainControl:	This class controls the overall composition and flow of the SS2k10 software. It ensures that all classes are created and initialized for use.
Queue: 	This class defines the process of adding or requesting emails from the database.
Train: 	This class defines the process of training or re-training the filter with a given set of emails.
6.2 [bookmark: _Toc279501258]Class Risk List
High:	Categorize, Train
Medium:	Format
Low:	EmailObj, MainControl, Queue
6.3 [bookmark: _Toc279501259]Event Flow/Class Modeling
[image:]
Figure 5 – Categorize Class, Basic Event Flow Sequence Diagram
[image:]
Figure 6 – Train Class, Basic Event Flow Sequence Diagram
[image:]
Figure 7 – Train Class, Alternative Event Flow Sequence Diagram

6.4 [bookmark: _Toc277418833][bookmark: _Toc277419086][bookmark: _Toc278022405][bookmark: _Toc279501260]Dynamic Modeling of Classes
6.4.1 [bookmark: _Toc277418834][bookmark: _Toc277419087][bookmark: _Toc278022406][bookmark: _Toc279501261]Categorize
· Brief Description
This class runs the Bayesian algorithm on an individual email to determine if it is spam.
· Attributes
	Access
	Type
	Name
	Description

	private
	Float
	spamProb
	The probability value of whether an email is spam or non-spam.

	private
	EmailObj
	email
	The email currently being evaluated by the filter.

	private
	Float
	valueSetByServer
	The minimum probability required to declare an e-mail is spam.

· Methods
	Access
	Return
	Name
	Params
	Description

	public
	Void
	catAlg
	None
	A method to run the Bayesian algorithm on the current email.

	public
	Void
	getProbs
	None
	A method to retrieve the probabilities from the database.

	public
	Void
	mark
	None
	A method to categorize the current email by setting isSpam.

 (
Prepare
entry
/ Receive Email from
InQueue
do
/ Format Email
[
OutQueue
 Not Full]
Categorize
entry
/ Run Bayesian Algorithm
do
/ Mark the Email
Store
entry
/ Store Email in
OutQueue
)
Figure 8 – State Chart Diagram of Categorize Class
6.4.2 [bookmark: _Toc277418835][bookmark: _Toc277419088][bookmark: _Toc278022407][bookmark: _Toc279501262]Train
· Brief Description
This class defines the process of training or re-training the filter with a given set of emails.
· Attributes
	Access
	Type
	Name
	Description

	private
	Boolean
	Train
	An attribute detailing whether the filter is to train (true) or re-train (false).

	private
	Pointer
	ptrTrain
	A pointer for the Training Database.

	private
	Pointer
	ptrCat

	A pointer for the Categorization Database.

· Methods
	Access
	Return
	Name
	Params
	Description

	public
	Void
	Training
	String[]: emails,
Boolean:
Train
	A method to calculate spam probabilities for each word in the given emails.

	public
	Void
	updateDB
	String: word,
Float: probability
	A method to update the database containing words and their spam probabilities.

	public
	Void
	clearDB
	None
	A method to clear the database of the current list of words that identify a spam email.

	public
	Void
	copyDB
	None
	A method to copy the categorization database into the training database.

	public
	Void
	swapPtrs
	None
	A method to swap ptrTrain and ptrCat.

[image:]
Figure 9 – State Chart Diagram of Train Class
7.0 [bookmark: _Toc277418836][bookmark: _Toc277419089][bookmark: _Toc278022408][bookmark: _Toc279501263]System Class Diagram
[image:]
Figure 10 – SS2k10 Class Diagram
8.0 [bookmark: _Toc277418837][bookmark: _Toc277419090][bookmark: _Toc278022409][bookmark: _Toc279501264]Process View
None.

2 | Page

image2.emf
Check

OutQueue

Retrieve First Email

from InQueue

Format the

Email

Apply Bayesian

Algorithm

Mark Email as

Spam

Mark Email as

Non-Spam

Store Email in

OutQueue

OutQueue Full?

[No]

[Yes]

Probability(Spam) >=

ValueSetByServer?

[Yes]

[No]

InQueue Empty?

[No]

[Yes]

Check InQueue

Called from "Enqueue"

image3.emf
Server Requests Training/Re-

Training

Clear Training

Database of Entries

Format Emails

Update Training Database

Swap Databases (Training

Becomes Categorization)

Check if Training or

Re-Training

Training?

Receive Server-

Marked Emails

Apply Bayesian

Algorithm

Copy Categorization Database into

Training Database

[Yes]

[No]

image4.emf
MainControl

Format

Server

(from Actors)

Train

Queue

Database

(from Actors)

Categorize EmailObj

image5.emf
 : Queue : Format : Categorize

 : Server

 : Database

isFull()

filterPop()

Pass Email

parse()

stem()

Pass Email

catAlg()

"Enqueue" First Email

getProbs()

Store Email

filterPush()

Return

mark()

image6.emf
 : Server : Database

 : Format : Train

Request Training

Check if Training

clearDB()

Successful Clear

Pass Emails

parse()

stem()

Pass Emails

Training()

updateDB()

Successful Update

Swap Databases

SuccessfulTraining

image7.emf
 : Server : Database

 : Format : Train

Request Training

Check if Re-Training

copyDB()

Successful Copy

Pass Emails

parse()

stem()

Pass Emails

Training()

updateDB()

Successful Update

Swap Databases

SuccessfulTraining

image8.emf
Prepare

entry/ Receive Collection of Marked Emails

Train

entry/ Clear the Training Database

Re-Train

entry/ Copy the Categorization Database to the Training Database

Format

do/ Format each Email

Update

do/ Run Bayesian Algorithm on Formatted Emails

do/ Update the Training Database

exit/ Swap Categorization and Training Database Pointers

[Train == True]

[Train == False]

image9.emf
MainControl

Format

words : String[]

stopWords : String[]

parse()

stem()

Queue

InQueue

OutQueue

queueFull : Boolean

serverPush()

filterPop()

filterPush()

serverPop()

isEmpty()

isFull()

isFirst()

Database

(from Actors)

emailObj

isSpam : Boolean

email : String

setSpam()

getSpam()

getEmail()

Categorize

spamProb : Float

email : emailObj

valueSetByServer : Float

catAlg()

mark()

getProbs()

Server

(from Actors)

Train

Train : Boolean

ptrTrain : Pointer

ptrCat : Pointer

Training()

updateDB()

clearDB()

copyDB()

swapPtrs()

image1.emf
Format

(from Use Cases)

Train

(from Use Cases)

<<include>>

Categorize

(from Use Cases)

<<include>>

Enqueue

(from Use Cases)

Server

(from Actors)

Database

(from Actors)

Dequeue

(from Use Cases)

<<extend>>

